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Abstract. We carefully analyze the use of the effective action in dynamical problems, in particular the

conditions under which the equation % =

0 can be used as a quantum equation of motion and illustrate in

detail the crucial relation between the asymptotic states involved in the definition of I" and the initial state
of the system. Also, by considering the quantum-mechanical example of a double-well potential, where we
can get exact results for the time evolution of the system, we show that an approximation to the effective
potential in the quantum equation of motion that correctly describes the dynamical evolution of the system
is obtained with the help of the wilsonian RG equation (already at the lowest order of the derivative

expansion), while the commonly used one-loop effective potential fails to reproduce the exact results.

1 Introduction

The effective action I'[¢], the generating functional of the
one-particle irreducible (1PI) vertex functions, is a very
useful tool in quantum field theories. It is widely used in
the analysis of their vacuum structure [1] (for more recent
reviews see e.g. [2,3]) and its symmetries are often exploited
in order to establish their renormalization properties [4].
For vanishing external sources, it satisfies the equation

gl
do(x,t) 0, (1)

sometimes referred to as the quantum equation of motion,
the quantum counterpart of the classical equation g—g =0.

In fact, at the lowest order of the semiclassical expan-
sion, I'[¢] coincides with the classical action S[¢], and this
property, when combined with (1), naively suggests that
I'[¢] should be regarded as the quantum action of the
system, and (1) as the corresponding quantum dynamical
equation. This interpretation, however, is correct only un-
der certain conditions. Moreover, even when this interpre-
tation applies, (1) in general cannot be straightforwardly
related to any semiclassical expansion.

The dynamical content of (1) was already briefly dis-
cussed in [5], where a solid theoretical background to the
work presented in [6] was provided along with the correc-
tion of some mistakes and misunderstandings. One of the
purposes of the present paper is to present a more detailed
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description of the approach followed in [5], with the aim
of clarifying the limits of applicability of this procedure.

As it is well known, an ansatz for I'[¢] which is well
suited for the applications is given by the gradient expan-
sion, an expansion in powers of the field derivatives:

rio) = [ s (~viate) + 20,00 @)

+Y(¢)(0,00"$)* + W (8)(0,0.0)* + ...) .

The lowest-order approximation, the so called local po-
tential approximation (LPA), is obtained from (2) once we
neglect the higher order derivatives and keep the wave func-
tion renormalization factor constant, i.e. field independent
(without loss of generality we can choose Z = 1):

riel = [ ate (~Vin(o@) + 30,0@00()) . ()
Within the LPA, (1) becomes

wn o Ver(9)
00 = ——55— (4)
i.e. it takes the same form of the classical equation of
motion where the classical potential is replaced by the
effective potential.

This equation has been widely used in the past as the
quantum equation of motion to describe the time evolution
of the scalar field expectation value [7]. More recently,
however, some of the limitations in the use of (4), and
more generally of (1), as a dynamical equation have been
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noted [8] and a different formalism to deal with dynamical
problems has been developed [8-10].

In the present paper we complement these previous
studies and push the investigation of (4) a step further.
We carefully analyze the limitations in the application of
this equation to dynamical problems and show that there
are physically relevant cases where it can be appropriately
used to describe the evolution of expectation values. It
will turn out that two points, overlooked in the past, play
a crucial role: the correct consideration of the boundary
conditions encoded in the definition of the effective action
and the use of a non-perturbative approximation for the
effective potential in (4).

Let us proceed now to our systematic analysis of the
subtle points related to the use of (1) as a dynamical equa-
tion. Asit will be clear in a moment, it is essential to specify
(i) the framework in which (1) is derived, to avoid confusion
on the physical meaning of ¢;

(ii) the choice of the boundary conditions (consistent with
point (i)) associated to the differential equation (1);

(iii) the approximation in which I'[¢] is computed, that
has obviously to be well suited for the particular problem
considered, in order to get physically meaningful results.

Concerning point (i), one has to be careful in considering
¢ as the field expectation value, because in general this is
not true. The effective action I"[¢] is the Legendre transform
of W[J], the generator of the connected Green functions,
defined by ex Wl = Z[J] = (0,t = +00[0,t = —00) . In
the Schrédinger picture, the vacuum persistence amplitude,
Z|[J], can be explicitly written as

Z1J] = (0]U (+00, —00)|0)
— (O[T (e—% Iz dt(H—J(wé(x))) 0, ()

where U (400, —o0) is the time evolution operator in the
presence of the source J, and |0) is the ground state of

H, the Hamiltonian of the system. From (5), and from
the definition of the classical field, ¢(x,t) = SWIJ]

= SIxt) We
immediately see that

(= t1(0) |+ 1)

¢(Xa t) - <—,t|+,t> )

(6)
where
(= t| = (0|U(+00,t) and |+,t) = U(t,—00)|0). (7)

Clearly |+, t) and |—, t) are (in general) different states. As
a consequence, ¢(x, t) is not (in general) a diagonal matrix
element of the quantum field dg(x) Moreover it may be
complex-valued. This is not surprising as I" generates the
1PI vertex functions that are in general complex quantities
satisfying causal (Feynman) boundary conditions. Only for
particular choices of the external source J can we have
|[+,t) = |—,t); under these conditions, (1) describes the
dynamical evolution of the field expectation value of &.
Effective actions defined according to (5) are called
Schwinger-De Witt (or “in—out”) effective actions [11].
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They incorporate boundary conditions that are appropriate
to problems where the transition from asymptotic states in
the past to asymptotic states in the future is considered (as
is the case of a scattering process). In passing we note that
more general definitions of “in—out” effective actions can
be obtained if the |0,¢ = —o0) and |0, ¢ = 4+00) asymptotic
states are replaced by more general |in) and |out) states,
i.e. by more general asymptotic boundary conditions.

A functional formalism that is in general appropriate to
dynamical problems is the so called “in—in” or closed-time-
path formalism [12-14], where one can construct “in—in”
effective actions that generate the dynamical evolution of
expectation values. This formalism is the one most largely
used nowadays in the applications to inflationary cosmol-
ogy.

In this paper, however, we shall not deal with this latter
approach and its most recent developments. Our aim is
rather to show that, under certain conditions, we can still
define an equation of motion in the in—out formalism.

In view of the fact that (1) is sometimes used as the
quantum counterpart of the classical equation of motion,
this problem is certainly worth to study.

Even in those cases where this formalism can be prop-
erly employed, however, we still have to face the problem
mentioned in point (ii). Equation (5) contains two asymp-
totic conditions at the initial (¢ = —o0) and final (t = +00)
times. These conditions are encoded in the definition of the
effective action itself, as well as in the definition of the classi-
cal field (the argument of I). It is then clear that we cannot
freely choose certain boundary conditions for the field and
its derivatives at a given initial time ¢t = ¢y, together with
a “physically convenient” form for the (functional) wave
packet of the system at the same time, and then evolve the
expectation value of the quantum field according to (1).
In fact arbitrary initial conditions for ¢ and for the wave
packet in general are not compatible with the asymptotic
conditions that enter the definition of I".

In the following, we provide arguments showing that,
by considering a specific set of initial conditions for the
expectation value of the field and of its derivatives, it is
possible to find the form of the initial (i.e. at t = to) wave
packet that is compatible with the asymptotic conditions
encoded in the definition of the effective action and whose
dynamical evolution is governed by (1). Our arguments will
be strongly supported by the numerical results that we shall
obtain for the dynamical evolution of the position operator
expectation value in the quantum-mechanical double-well
potential problem. In this case we are also able to consider
the exact dynamical evolution with the help of the time-
dependent Schrodinger equation, so that we can compare
the results obtained with (1) with the exact ones. As we
shall see, when the initial wave packet is chosen according
to our criterion, we find excellent agreement between the
two results.

We have found it convenient to investigate the question
of the determination of the initial wave packet within the
framework of the variational definition of the effective ac-
tion [15], that is the generalization to the time-dependent
case of the well-known variational definition of the effec-
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tive potential [16]. The effective action I'[¢] is obtained
through the extremization of a certain functional of two
(a priori) different states, called |¢4, ) and |¢_, ), under
the constraint that (¢_, t|B(x)[thy,t) = ¢(x,t) (see next
section).

Finally we come to point (iii) and to the problem of the
approximations employed to compute the effective action
and effective potential. The most simple approximation of
I' is given by the LPA, i.e. by (3), and the most straightfor-
ward approximation of the effective potential Veg is given
by the one-loop potential V7;. This last approximation how-
ever presents a serious drawback. The exact effective po-
tential (actually the effective action) is a convex function of
its argument [2,17,18]. However, when the classical (bare)
potential is not convex (these are the physically most inter-
esting cases), at any finite order of the loop expansion the
approximated effective potential does not enjoy this funda-
mental property. Alternative non-perturbative methods of
computing the effective action and potential, though, such
as lattice simulations [19], variational approaches [20], or
suitable averages of the perturbative results [21], provide
the proper convex shape. In addition to the methods quoted
above, a non-perturbative convex approximation to the ef-
fective potential, Vi, is found within the framework of the
wilsonian renormalization group (RG) equation [22-26].
We have computed the effective potential with the help of
this RG equation and then inserted Vgg in (4). The com-
parison of the results obtained with (1) with those obtained
with the help of the time-dependent Schrodinger equation
shows that Vrqg, because of its non-perturbative features,
provides an excellent approximation for the correct “quan-
tum potential” to be used in the “quantum equation of
motion”. For completeness we will also check the inade-
quacy of V1) to describe non-perturbative regimes with our
equations of motion.

The plan of this paper is as follows. In Sect. 2 we briefly
illustrate the basic formalism employed in the following. In
Sect. 3 the central argument concerning the validity of (1)
is discussed, while its application to the harmonic oscillator
and to the double-well potential are respectively addressed
in Sects.4 and 5. The former example is treated analyti-
cally whereas the latter is solved by a numerical analysis.
Section 6 contains the summary and outlook.

2 Variational definitions of I'[¢] and Vg (¢)

To set up the tools of the following analysis, we briefly
review in this section the variational principles that lead
to the definitions of the effective action and the effective
potential, referring to [15,16] for details. According to [15]
the effective action is the stationary, time-integrated matrix
element of i, — H

ro= [ (o - B) oo, @

— 00

where the right-hand side is stationary when the two time-
dependent states |¢4,t) are varied arbitrarily and inde-
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pendently, but with the two constraints

(o t|B(x)[ 4, t) = B(x, 1)

and
<7/}—7 t|1/}+7 t> = 1a

and with the asymptotic boundary conditions

lim |¢:|:at> = |0>7

t—F oo

where |0) is the ground state of H.
This variation, together with the constraints (9) and
(10), is translated into the equations

(00— 7+ [ J0c)809 ) 68) = w01
(12)

i9, — H 3x J(x,)P(x _ = w* _
(@ i [ i ))m A=t (D) 23)

where J(x,t) and w(t) are the Lagrange multipliers that
implement the two constraints (9) and (10). The relation
between the couple of states |1+, t) and |+, ), introduced
in (7), is shown in [15]. They are related by a phase factor
given by the time integral of the Lagrange multiplier w(t).

If we limit ourselves to considering constant (in space
and time) field configurations, the effective action is reduced
(see (3)) to the effective potential, the generator of the 1PI
graphs with vanishing external momenta:

F[¢]|¢:const‘ = _Vreﬂr((b)/délx' (14)

As is well known, Vog(¢) can be obtained by minimiz-
ing the expectation value of the Hamiltonian among the
normalized time-independent states which have a field ex-
pectation value equal to ¢ [16], i.e.

Verr (¢) = ming (] H|15), (15)
with the states |¢)) subject to the constraints
(WIe(x)|e) = ¢ (16)
and
(W) = 1. (17)

The constrained minimum condition in (15) generates
the time-independent Schrédinger equation for a modified
Hamiltonian:

(-7 [exdea)wp=rW). 09
where again J and E are the Lagrange multipliers asso-
ciated to the two constraints (16) and (17). As is clear
from (15), the ground state(s) of H, which is (are) ob-
tained by solving (18) with J = 0, is (are) associated to
the minimum (minima) of Veg (o).
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Except for very few cases, the exact form of the effective
action cannot be determined, and we have to resort to some
approximation. A typical ansatz for I", very appropriate
for our following considerations, is the gradient expansion,
an expansion in terms of the field derivatives. Suitable
approximations are obtained by considering truncations
to a given order. Although in the applications we shall
limit ourselves to considering the LPA (see Sects.4 and
5), which is the lowest order in this expansion and is the
approximation typically adopted in dynamical problems,
the considerations that follow do actually apply to any
order of the expansion (see next section).

3 The quantum equation of motion

We have already noted that the classical field ¢(x,t) (the
argument of I") is not in general a diagonal matrix element,

i.e. it is not the expectation value of the quantum field
in a given state. However, as we shall see at the end of this
section, under certain conditions the two states |1, t) and
[_,t) of (8) coincide: |¢y,t) = |¢_,t) = |, ), in which
case ¢(x, 1) is the expectation value of &(x) in |1, t). For
the moment we assume that we are under these conditions.

Let us now consider the differential equation for ¢(x, t),
(1), once the effective action is approximated with a deriva-
tive expansion truncated at the order m, where 2m indicates
the highest number of field derivatives (in the approxima-
tion considered in (3), it is m = 1). In order to get a unique
solution of (1) in the time interval [to,t1] (where ¢; is ar-
bitrarily chosen), we need 2m boundary conditions, which
we can fix for instance on the manifold t = tg, with tg
chosen as the initial time for the evolution of ¢.

To make contact with the variational principle discussed
in Sect. 2, we have to consider the evolution of ¢(x, t) from
t = —o0 to t = 400, and therefore we must provide ¢(x,t)
also in the time intervals | — 0o, to] and [t1, +oo[. We can
choose the function ¢(x,t) in these intervals arbitrarily,
provided the asymptotic conditions in (11) and the proper
matching of this function with the unique solution of (1)
in the interval [tg, t1] at the times ¢ and ¢; are taken into
account. Once the function ¢(x, t) is assigned in the whole
range | — 0o, +00o[, the constraint on the right-hand side
of (9) is defined and we are therefore able to implement the
variational principle and to determine the corresponding
source, which we indicate with J(x,t), as well as the state
|w+7t> = |1/L»t> = |¢»t>

We note in passing that the source J(x,t) can also be
obtained from its well-known relation with the functional
derivative of the effective action

DI ik,
3¢ (x,1)

Equation (19) is the generalization of (1), when a source,
linearly coupled to the field, is turned on. Obviously the
source J(x,t) associated to the field ¢(x,t) considered
above must vanish in the range [t, t1].

So, on the basis of the variational principle, we conclude
that there is only one state |1, t) that is associated to the

(19)
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specific function ¢(x, t) introduced above, and in particular
that at ¢ =ty the boundary conditions considered for the
time evolution of the field are in fact related to |, o).
This is an important point because, as mentioned in the
Introduction, if the constraints on the variational principle
(see (9), (10) and (11)) are neglected, one can in general find
more than one normalized state that is compatible with
the set of boundary conditions fixed at ty. However, among
these states, only |1, t) is truly related to the effective action
and therefore to the full evolution of ¢(x,t) in the time
interval | — oo, +00].

We can now understand what we have already antici-
pated in the Introduction concerning the applications. In
a typical cosmological application the effective action is
truncated as in (3), a convenient form of the wave packet
at the initial time ¢ = ¢ (typically gaussian) is taken, and
the initial values for the expectation value of the scalar
field ¢ and of its first time derivative are usually taken to
be ¢ = constant and ¢ = 0. On the basis of the previous
considerations, we easily understand that the time evolu-
tion of ¢ is not always related to the time evolution of the
wave packet that has been considered, or, in other words,
$(x,t) need not be the mean value of $(x) in |1, ).

Our main problem is then the determination of |y, ¢o),
so that we can have a direct physical interpretation of the
function ¢(x,t) as the time evolution of the expectation
value of the field for that particular state. Even though it
is certainly not easy to find a solution to our problem for
generic boundary conditions, we expect that under certain
circumstances it should be possible to determine |1, o).
In the following we consider a case, which is relevant to
the physical applications (see above), where |1, ¢y) can be
found. Namely we take at t = t( a constant field ¢(x,ty) =
¢o with vanishing derivatives up to the (2m)th order. Our
goal is now to identify the state |1, to) defined through the
variational principle.

To this end we consider a different physical problem,
namely the case in which, for t > ¢, the field ¢ is a constant:
¢ = ¢g. For this new problem and for —oo < t < tg, the
source J has to be equal to the one of the previous case
(J = J(x,t)), while for t > g, J is given by the constant
Jo, which corresponds to ¢y. This constant is obviously
fixed by the condition

5¢ $=¢o (20)

With this assignment for the source J, the solution
of (12) for t > t¢ must be the time-independent state
(o)) = [, to)- (21)

In fact in this case (12) becomes

(ﬁf o [ @) - E) () =0, (22)

where w(t) = —Fp is now a time-independent constant,
and the two constraints in (9) and (10) are
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W(J)|DX)[(Jo)) = o, ((Jo)[w(Jo)) =1.  (23)

Clearly this is nothing else than the time-independent
variational principle that defines the effective potential
(see (14)—(18)). We then have found that the state |1, tg) =
|1(Jo)) we were looking for is nothing but the normalized
time-independent state that provides the minimum expec-
tation value of the Hamiltonian H among the normalized
states with field expectation value equal to ¢g.

There is one main assumption behind this result, and
it concerns the source J. In fact, for our purposes, we have
considered two different sources, which are both equal to
J(x,t) in the range —oco < t < t, whereas for t > to one is
vanishing while the other is a non-vanishing constant J =
Jo. Note that, by construction, Jo = J(x,tg). Therefore
in the former case the source is discontinuous at t = %
and we are assuming that this has no consequences on
the determination of the solution of the time-dependent
Schrédinger equation. This discontinuity could be replaced
with a sharp but still continuous change of the function J
around t = ty, but again we would have to assume that
this has no consequences on the determination of the state.

Finally, let us come back to the important question,
mentioned at the beginning of this section, that at least in
some cases the effective action (or an approximation of it)
can be obtained as a diagonal matrix element, i.e. in (8)
we have [¢_,t) = |[¢4,t). We now argue that this should
be the case when the motion of the field ¢ in the time
interval [to,t1], i.e. the time interval where the motion of
¢ is governed by (1) plus a set of boundary conditions, is
periodic. Suppose that this time interval covers n periods
(let us call At the period), i.e. that t; = tg + n At. Then,
at time t = t1, the field ¢ and its derivatives take the same
values as at t = tg.

Now we can obviously make a shift on the time axis
without changing the physics and take the point t = 0 to
be symmetric with respect to tg and t1,i.e. —tg =t; =t in
the new frame. Let us now choose J in (12) to be symmetric
for time reflection, namely J must be taken in such a way
that the ground state at ¢ = —oo is driven onto |, —1) at
t = —t (and as before we indicate this particular source
as J(x,t) with —oo < t < —f ), then J = 0 within the
range [—t,¢] (in this interval ¢ covers n periods), and, for
t <t < 400, the source is turned on symmetrically, i.e.
J(x,t) = J(x,—1).

Clearly, with such a choice, the evolution of the two
states in (12) and (13) is symmetric for time reversal and
therefore equal, i.e. ¢y, t) = |1_,¢). It must be noticed
that the class of periodic motions of ¢ obviously includes
the case of constant ¢ (i.e. the case associated to a constant
non-vanishing source), which was also considered above.

The conclusion of this section is that, at least for those
cases in which we consider a truncated derivative expansion
of the effective action which gives rise to a periodic dynam-
ical evolution of ¢, this latter quantity has the meaning of
the expectation value of the field operator, and the associ-
ated quantum state, at some particular time ¢ = ¢, can be
identified with the state that defines the effective potential
through the static variational principle (see (14)—(18)).
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4 An application. The harmonic oscillator

We now discuss a simple application of the results presented
in the previous section. As in [15], we consider a trivial field
theory (in one time and zero space dimension), namely
the case of a one-dimensional harmonic oscillator whose
Hamiltonian is (h=m = 1)

(24)

The term — % has been added in order to have a vanishing
vacuum energy.

In this case it is known that the effective action I’
coincides with the classical action S. In [15] this result has
been recovered by means of the variational principle, which
we illustrated in Sect. 2, and the explicit solutions of (12)
and (13) for a generic source function J(t) have been shown
to be

QY4 1) = (Qly—, 1)
~(9)" eo{-5@-02 Q-0 -1},

(25)

2 2

with

A i o[t . /
alt) = o tiQlusst) = 5 [ dt Iy e (20)

— 00

Also, the Lagrange multiplier w(t) turns out to be w(t) =
J(t)a(t).

From (25) we see that |14, t) = |1)_, ) as was expected
because of the periodicity of the motion of ¢ for the har-
monic oscillator effective action. Moreover, we see that the
right-hand sides of (25) and (26) are totally determined
once the source J is given.

In addition we show a concrete realization of the pro-
cedure illustrated in Sect.3. In fact, we derive from the
effective action the equation of motion for ¢(¢) which is
equal to the classical one (being in this case S[g] = I'[¢])
and we therefore have the typical solution

q(t) = A cos(wt + wt), (27)
where the constant 7 is fixed by the boundary conditions.
By taking

nx
== 28
r= (28)
with n integer and tg = —7 (where ¢ is defined in Sect. 3),

we get q(to) = A and ¢(tg) = 0. Moreover ¢(t) covers n
periods in the time range [—7,7] and so ¢(7) = A and
i(r) = 0.

Our problem here is to find the source J(t) that drives
q(t) from q(—o0) = 0 (in fact as seen in Sect. 3, the quantity
qatt = oo must be the expectation value of the coordinate
for the ground state of the harmonic oscillator, which is
zero) to the value ¢(—7) = A. Then, after the interval —7 <
t < 7 where J = 0 and ¢(t) has the mentioned periodic
behavior, ¢ must evolve from ¢(7) = A to g(+00) = 0.
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This source is

Jt)=Awe ¥l (29)
(—oo < t' < —7) and (1 <t' < +00),
J)Y=0 (-t<t <71), (30)

where € is a small parameter, which eventually has to be
sent to zero. In fact by inserting this particular source
into (26), q(t), for —7 < t < 7 is given by
iwA
)= —
q(t) = =

—T
. . 1 —iwt _iwt’ et
x lim lim dt’ e e e
e—>0T—4o00 -T

T
+/ dt/ eiwt e—iwt' e—et’}
r

= A cos(wt + wT), (31)
where we have introduced the intermediate step of cutting
the time integrals at a large time T' > 0 and then taking
the limit 7" — 400, which will be helpful in the following
calculations. The final result in (31), which is the desired
solution introduced in (27), has been obtained with the
help of

exp(—iwT) = exp(iwT), (32)

which holds because of (28).

We also check the behavior of ¢(t) for t — +oo, as
obtained from the source defined in (29) and (30). We
therefore compute the integral in (26) by introducing as
before the cutoff 7 for large (positive and negative) values
of t’ and putting ¢ = T', and then taking the limits T' — +o0
and € — 0:

iwA
q(+o0) = 5

x lim lim
e—0T—+o00 _T

T
+/ dt/ e—in eiwt/ e—et/}
r

_ wd (33)

2
eiw‘rfeT } =0.

x lim lim
e—0T—+o00
{ efin or—er efin
e -

Instead of taking the limit T — oo in the last line of (33),
we keep T fixed to a very large value due to the oscillating
terms exp(—iwT) and perform the limit ¢ — 0. Then, by
making use of (32), we find g(+00) = 0. The computation
for g(—o0) is totally analogous and gives again g(—oc0) = 0.

Equations (31) and (33) provide the desired results for
the source J(¢) defined in (29) and (30). As noted in Sect. 3,

—T
{ dt/ efin eiwt' eet'

w+ € iw—e€
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there is a discontinuity in the function J(t) at the two
points ¢ = £7; however, in this particular example there is
no consequence on the coordinate expectation value (and
its derivatives), which are continuous at those points.

According to Sect. 3 we must also find a new source that
determines a static coordinate expectation value, namely
q(t) = A for —7 < t < 7. For this purpose, we retain the
definition in (29) for large positive and negative times but,
following the argument in Sect. 3, instead of (30), we now
take J = Aw exp(—er) constant in the time interval [—7, 7]
and this new source does not have any discontinuity points.
Moreover in the two asymptotic regions the integrals for ¢’
are equal to the ones performed above and we have only to
compute the contributions in the region where the former
source vanishes according to (30). Therefore, for —7 < t <
7, q(t) is given by (31) plus an additional term (note that,
when performing an integral in this limited range [—7, 7]
the term exp(—e7) in the new source will always tend to 1
for € — 0 and it can therefore, for simplicity, be neglected
from the beginning):

A [T . /
q(t) = A cos(wt + wr) + MT / At e—iwlt—t|

A . ‘
= A cos(wt + wT) + 5 (2 — W) _ e“’(“”))

— 4, (34)
where again (32) has been used. This is exactly the required
solution for q.

Finally, in order to check that ¢(¢) vanishes asymp-
totically even with this source, we must check that the
vanishing result in (33) is not modified. This time we have
the additional contribution

WA T ' ,
q(+OO) _ % d+ eflw(Tft)
A —iwT . .
_ 62 (eu,wr _ e—le) _ 0’ (35)

which is vanishing because of (32). The same is valid for
q(=00).

5 The double-well potential

As a further test of the arguments presented in Sect. 3, we
now consider the non-trivial case of the motion of a wave
packet in a double-well potential. To follow the dynami-
cal evolution of the position operator expectation value,
we make use of (1) within the framework of the LPA
(see (3)) for the effective action. The effective potential
Vet (q) is obtained with the help of the wilsonian RG equa-
tion (see below), which, as we mentioned before, gives a
non-perturbative, convex, effective potential (for compari-
son also the one-loop effective potential will be considered
at the end of this section). Again we fix for ¢ and ¢ the
two initial conditions

and ¢(tg) = 0.

q(to) = qo (36)



V. Branchina et al.: Effective action and the quantum equation of motion

0.8

0.6

04

02

-2 -1‘.‘5\ = -‘1 -0‘.5 (‘J 0?5 ‘; = <:|f5 2
q
Fig. 1. Vaw(q) and Vra(q) for A =0.15

Then, being again in the presence of a periodic motion,
we are allowed to use (1) as an equation of motion for
at) = (@), = (. HQlw, ).

According to our arguments, the function ¢(¢) derived
by means of the above procedure should be equal to the one
obtained by solving the time-dependent Schrédinger equa-
tion with the form of the initial wave packet fixed by (22).
In fact we have numerically solved the latter problem with
the initial conditions given by (22); for comparison, we also
considered the evolution of an initial gaussian wave packet
that is often used in the applications!.

When we compare these results with the one obtained
within the framework of the effective action formalism,
we see that, given the initial conditions (36), (1) (together
with (3)) provides a very accurate description of the dynam-
ical evolution of ¢(t), if the initial state is chosen according
to our criterion, i.e. with the help of (22). We also see
that the (non-convex) one-loop effective potential, that is
the approximation to Vg considered in the applications,
is inadequate to describe the dynamics of ¢(t).

In Fig.1 we have plotted the double-well potential
Vaw(q), which we have written as Vaw(q) = —1¢* + A¢* +
ﬁ, together with the effective potential Vog(q), obtained
by solving the RG equation [28-31]

OUke) _ 1 (1 N U/J(fl))

ok on k2 (37)

(here U, (g) means 82%}}‘”). Note that in this framework

the classical double-well potential Vi (¢) is nothing but the
bare potential, i.e. the UV boundary condition for U (q);
also note that the effective potential Vg (q) is approximated
by the solution of (37), once it has been integrated down to
k =0, i.e. once the quantum fluctuations have been taken
into account: Veg(q) = Vra(q) = Ug=0(q). Also, when (3)
is inserted in (1), the quantum equation of motion for ¢(t)

! The RG flow equation for Ve and time-dependent
Schrédinger equation were solved with the help of the NAG
routines [27]. These routines were also used to compute the
mean values of Q and P.
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takes the form
(38)

i.e. the dynamical evolution of ¢(t) is given by the classical
equation of motion, being the classical potential replaced
by Veg, which, as discussed above, will be approximated
by Vre in our numerical analysis.

We now illustrate the above points by computing g(t)
and p(t) (= ¢(t)) for three different values of A: 1.1,0.15
and 0.07. We also choose the initial time as ty = 0, and the
initial values of ¢ and ¢ as follows: ¢(0) = 0.2 for A = 1.1,
q(0) = 0.5 for A = 0.15, ¢(0) = 1.0 for A = 0.07, and
4(0) = 0 for each value of A.

According to our arguments, for such a choice of the
initial values, (1) describes the time evolution of the expec-
tation value ¢(t) related to the initial wave packet, which
is obtained by solving the time-independent Schrodinger
equation (see (22))

(—hQA + Vaw(q) — Jq) ¥(g) = E,¥(q),

o (39)

where, for each of the chosen initial values of ¢(¢), J = J(q,)
is computed with the help of the equation (¢,|Q|¢,) = q,
(for notational convenience we have replaced ¢(0) by ¢,).

Once the initial wave packet 1(g,0) is obtained with
the help of (39), ¥(z,t) is obtained by solving the time-
dependent Schrédinger equation numerically, and the exact
values of ¢(t) and p(t) are then computed. These results
are compared with those obtained by solving (1).

As we already discussed in the Introduction, the bound-
ary conditions that define the effective action are not ap-
propriately taken into account in the applications of the
effective action formalism to dynamical problems. Typi-
cally one associates a gaussian initial wave packet with
the initial conditions (36). For this reason we have also
considered the exact evolution of a gaussian wave packet,
¥, (q), chosen in such a way that its width is equal to that
of the ground state of the harmonic approximation at the
bottom of one of the two wells.

For each of the three values of X considered, we present in
the following figures the shape of the initial wave packets,
¥,(q) and 9,(q), the expectation value of the position

operator (Q); = ¢(t) as a function of time, and the phase-
space ¢—p diagram.

In Figs. 2 and 3 we present the results for the A = 1.1
case. From Figs. 2b and 3 we see that the results obtained
with 1, (q) and 1, (q) are almost the same (and that they
are both well approximated by the results of (38)). As is
clear from Fig. 2a, this is because, for this particular value
of A, ¥, (¢q) almost coincides with 1, (q).

However, we shall now see that, when we consider other
values of A, corresponding to different heights of the po-
tential barrier, the choice of the correct initial wave packet
becomes crucial. Taking for instance A = 0.15, we obtain
two different shapes for ¢, (¢) and v, (¢) (Fig. 4a). It is not
difficult to imagine that they have a different dynamical
evolution, as can actually be seen from Figs. 4b and 5. The
crucial result for our analysis is that (38), i.e. the LPA
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Fig. 2. The case A = 1.1. a The initial wave packets v, (q)
and v, (¢). b The time evolution of ¢(t) as obtained from the
Schrodinger equation with initial wave packets ¢, (q) and 1, (¢),
and from (38) with the initial conditions given in the text
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Fig. 3. The phase-space ¢—p diagram for the three cases con-
sidered in Fig. 2b (A =1.1)

of (1), gives a very good approximation to the time evo-

lution of (@) when the initial state is 9, (q) (see Fig.5).
This gives a very robust support to the arguments we have
developed in Sect. 3.

As an additional example, we have considered the case
A = 0.07. Once more, Figs.6 and 7 confirm that the ef-
fective action formalism, in particular the LPA we have
considered in the present paper, actually describes the dy-
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Fig. 4. The case A = 0.15. a The initial wave packets v, (¢)
and v, (¢q). b The time evolution of ¢(t) as obtained from the
Schrodinger equation with initial wave packets ¢, (¢) and ¢, (¢),
and from (38), with the initial conditions given in the text
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Fig. 5. The phase-space diagram for the three cases considered
in Fig. 4b (A = 0.15)

namical evolution of the expectation value of the position
operator once the initial state is selected according to (39).

It is worth noting that, because of the initial conditions
chosen for ¢, the cases considered above describe tunnelling
processes. Needless to say, a semiclassical expansion of I
at the lowest order, i.e. the approximation I' = S, would
have been unable to describe these tunnelling processes.
In fact, in this approximation, Veg = Vg .
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Fig. 7. The phase-space diagram for the three cases considered

in Fig. 6b (A = 0.07)

From the above results, it is clear that the trajectory of
the gaussian wave deviates more and more from the correct
result for decreasing values of A, i.e. for larger quantum
effects due to the tunnelling. Therefore it can be employed
as an ansatz of the correct wave packet only for a specific
range of the coupling A and this is exactly what has been
done in [5], where the results obtained with a gaussian
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wave packet are still accurate (as is the case for A = 1.1 as
considered above).

This is a clear indication that a semiclassical approx-
imation to (1), which, for perturbatively small values of
A, would correspond to the periodic motion of an almost
gaussian wave packet around one of the classical minima,
is misleading. The trajectory obtained from (1) includes
quantum effects that are neglected in a semiclassical ap-
proach.

Figure 7 needs one more comment. In fact for this
smaller value of A\ the phase-space g—p diagram obtained
with the “correct” initial wave packet, even though it is
still qualitatively well described by the phase-space dia-
gram obtained with (38), shows a certain deviation from
the latter. The reason for such a deviation has already
been explained in [5] and has to be traced back to the ap-
proximation that we have used for I', the LPA. Actually,
it was shown in [5] that the successive step in the deriva-
tive expansion of the effective action, i.e. the inclusion of
the wave-function renormalization in (3), provides an im-
provement of the LPA results. Here we are concerned with
different problems, and so no longer pursue this issue.

Before ending this section we would like to add a com-
ment concerning the approximation of V.g, namely the
one-loop approximation Veg ~ Vi;. In Fig. 8a we show the
one-loop effective potential versus the RG effective poten-
tial. Asis well known, the one-loop potential does not enjoy
the convexity property of the exact effective potential Vg.
Actually thisis true at any finite order of the loop expansion
for the effective potential. Moreover, in the region between
the two inflection points of the classical potential, the one-
loop potential develops an imaginary part; according to
the usual interpretation [21], this signals the instability of
the configurations in this region. In Fig.8a the real part of
the potential is shown, which is the only part that is taken
into account in dynamical problems.

As is well known, V7 can be obtained analytically by
replacing U, by U in (37) (remember that Uy = Vay),
and then performing the elementary integration from k = 0
to k = A, ie. by solving the RG flow equation in the
independent-mode approximation. We thus obtain Vj; =
Vaw + 0V11. Expanding in % and neglecting g-independent
terms, we can write the one-loop correction 8V7; as

1 " A 1
oV = E\/de arctan 7 +0 (/1)
dw
for |x| > !
Tz > —,
V2 (40)
1 Vi 1 1 ”
Vi=—gra T <A> 3V Vaw
for |¢] < —
I |T —
V12

From the above equations we see that, in the region |z| <
L_ " R(8Vi)) vanishes with A — oco. A comparison of

V12X’
Fig. 8a with Fig. 1 also shows that, within this inner region,

V11 is practically equal to Vgy. This is an example of the
well-known fact that the loop expansion cannot change the
concavity of V.
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Fig. 8. a The one-loop (non convex) effective potential com-
pared with the RG (convex) one. b The phase-space diagrams
obtained from (38) with Vg approximated by Vi1 and Vig, for
a motion with ¢(0) = 0.5 corresponding to an energy below the
potential barrier. Differently from Vi, Vi1 completely fails in
describing the tunnelling. In a and b it is A = 0.15

It is clear that for the kind of problems we have con-
sidered in this section, namely for tunnelling processes,
the one-loop effective potential V7 is as inadequate as the
classical potential Vg, to approximate Vg in (38). This is
illustrated in Fig.8b, where it is shown that for an initial
energy below the energy barrier the motion is obviously
confined within one well. According to the results of the
semiclassical expansion, we can actually state that at no
finite order of this expansion can these phenomena be de-
scribed by replacing the semiclassical effective potential
in (38). Instead they are perfectly well described by the
solution of (37), Vka, which is only the lowest-order ap-
proximation to Vg of a different expansion, namely the
gradient expansion.

In order to push this comparison a step further, we have
also considered a motion with energy above the potential
barrier. Naturally, in this case, by replacing Vi; in (38)
we obtain a solution that, as is the case for Vg, explores
the whole allowed region in position space. However, as is
shown in Fig.9, the correct description of the motion is
again given by Vrg and not by V).
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Fig. 9. The phase-space diagrams obtained from (38), with
Ve approximated respectively by Vi1 and Vrg, for a motion
with ¢(0) = 0.7 corresponding to an energy above the potential
barrier. Even if now also Vi) allows the whole g-region to be
explored, again we see that the motion is quite well described
by Vke and not by Vi;. Here we have taken A\ = 0.25

6 Summary and outlook

In the present work we have shown that in order to make use

of the equation 5351&@52)

equation of motion”, attention has to be paid to a certain
number of important issues.

First of all we need to make sure that we are under
conditions such that the argument of I', the classical field
od(x,t), is actually the expectation value of the quantum
operator gii(x) in a given state |¢,t), which is not always
the case.

Once we are under these conditions, we have shown
that the asymptotic |in) and |out) states that enter the
definition of the effective action have to be taken appropri-
ately into account in the determination of the initial wave
functional ¥[¢(x, t)] associated with the motion of ¢(x, t).
More precisely, by considering a derivative expansion for
I', we have argued that it is possible to determine uniquely
the initial state ¥[¢p(x, )] from the boundary conditions
for the motion of ¢(x,t), assigned for instance on a given
manifold ¢ = ¢, (initial time), together with the asymptotic
conditions encoded in the |in) and |out) states.

For initial conditions that are particularly important
in the applications, namely the case of constant initial ¢
and vanishing derivatives of ¢ at t = ty, we have been able
to show that the initial (functional) wave packet obeys a
modified time-independent Schrodinger equation, actually
the equation that allows the definition of the effective po-
tential.

Finally we have shown that, in the framework of the
LPA for I', where the quantum equation of motion is ob-
tained by the classical equation of motion once the classical
potential is replaced by the effective potential, a reliable
approximation to the effective potential comes from the
solution of the corresponding wilsonian RG equation; in-
stead, the one-loop effective potential, and more generally
any finite-order approximation to the loop expansion for
Vesr, fails to describe the dynamics of ¢(x,t).

= 0 ((1) in the text) as a “quantum
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All the above points have been illustrated by considering
quantum-mechanical examples. After a brief application of
these results to the simple case of the harmonic oscillator,
which confirmed our arguments, we have considered the
case of a double-well potential. The nice feature of consid-
ering a quantum-mechanical example is that we have the
possibility to compute also the dynamical evolution of the
wave packets with the time-dependent Schrodinger equa-
tion, i.e. we can compare our results with exact results.
The cases we have investigated all confirm the correctness
of our conjectures.

One point that was not considered in the present work
concerns the possible extension of these results to the case
of higher orders in the derivative expansion of I'. It would
also be interesting to investigate the impact of the presence
of non-local terms in I". We plan to investigate this point
in future work.

Naturally our ultimate goal is to apply our results in
a QFT context where, as we cannot solve the quantum-
mechanical (Heisenberg or Schrédinger) equations exactly,
we really need to have sensible approximation schemes. We
hope that our results can help in this direction.
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